Nuprl Lemma : mon_when_hom_swap
13,42
postcript
pdf
g
,
h
:GrpSig,
f
:MonHom(
g
,
h
),
b
:
,
p
:|
g
|. (when
b
. (
f
(
p
))) =
f
(when
b
.
p
)
|
h
|
latex
Up
groups
1
Definitions of Statement
MonHom(
M1
,
M2
)
,
when
b
.
p
Definitions
,
ff
,
tt
,
P
Q
,
t
T
,
if
b
then
t
else
f
fi
,
when
b
.
p
,
x
:
A
.
B
(
x
)
,
P
&
Q
,
P
Q
,
P
Q
,
Unit
,
,
MonHom(
M1
,
M2
)
,
Lemmas
grp
sig
wf
,
monoid
hom
wf
,
grp
car
wf
,
assert
of
bnot
,
eqff
to
assert
,
not
wf
,
bnot
wf
,
assert
wf
,
iff
transitivity
,
eqtt
to
assert
,
bool
wf
,
monoid
hom
id
,
grp
id
wf
origin